O(f) Bi-Approximation for Capacitated Covering with Hard Capacities

نویسندگان

  • Mong-Jen Kao
  • Hai-Lun Tu
  • D. T. Lee
چکیده

We consider capacitated vertex cover with hard capacity constraints (VC-HC) on hypergraphs. In this problem we are given a hypergraph G = (V,E) with a maximum edge size f . Each edge is associated with a demand and each vertex is associated with a weight (cost), a capacity, and an available multiplicity. The objective is to find a minimum-weight vertex multiset such that the demands of the edges can be covered by the capacities of the vertices and the multiplicity of each vertex does not exceed its available multiplicity. In this paper we present an O(f) bi-approximation for VC-HC that gives a trade-off on the number of augmented multiplicity and the cost of the resulting cover. In particular, we show that, by augmenting the available multiplicity by a factor of k ≥ 2, a cover with a cost ratio of ( 1 + 1 k−1 ) (f−1) to the optimal cover for the original instance can be obtained. This improves over a previous result, which has a cost ratio of f via augmenting the available multiplicity by a factor of f .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Set Cover Revisited: Hypergraph Cover with Hard Capacities

In this paper, we consider generalizations of classical covering problems to handle hard capacities. In the hard capacitated set cover problem, additionally each set has a covering capacity which we are not allowed to exceed. In other words, after picking a set, we may cover at most a specified number of elements. Based on the classical results by Wolsey, an O(log n) approximation follows for t...

متن کامل

Approximation Algorithms for Capacitated Rectangle Stabbing

In the rectangle stabbing problem we are given a set of axis parallel rectangles and a set of horizontal and vertical lines, and our goal is to find a minimum size subset of lines that intersect all the rectangles. In this paper we study the capacitated version of this problem in which the input includes an integral capacity for each line. The capacity of a line bounds the number of rectangles ...

متن کامل

Bi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions

The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...

متن کامل

Constant Approximation Algorithm for Non-Uniform Capacitated Multi-Item Lot-Sizing via Strong Covering Inequalities

We study the non-uniform capacitated multi-item lot-sizing (CMILS) problem. In this problem, there is a set of demands over a planning horizon of T time periods and all demands must be satisfied on time. We can place an order at the beginning of each period s, incurring an ordering cost Ks. The total quantity of all products ordered at time s can not exceed a given capacity Cs. On the other han...

متن کامل

Constant factor Approximation Algorithms for Uniform Hard Capacitated Facility Location Problems: Natural LP is not too bad

Abstract. In this paper, we study the uniform hard capacitated k facility location problem (CkFLP) and knapsack median problem (CKM). Natural LP of both the problems have an unbounded integrality gap. Byrka et al. in [5] present an (O(1/ǫ)) for CkFLP violating cpapcities by a factor of (2 + ǫ). However, the proofs in [5] do not seem to work. In this paper, we first raise the issues in [5] and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016